
A Creative Tool for the Musician Combining
LSTM and Markov Chains in Max/MSP

Nicola Privato1, Omar Rampado2, and Alberto Novello2

1 Conservatorio C.Pollini of Padua, Italy nicola.privato@gmail.com
2 omar@ognibit.it

3 Conservatorio C. Pollini of Padua, Italy
alberto.novello@conservatoriopollini.it

Abstract. Scramble 4 is a standalone MIDI tool developed in Max/MSP 5

for the real-time generation of polyphonic music, that combines Markov
chains and LSTM neural networks. It offers to the performing musician
and composer a simplified user interface for the analysis of MIDI files,
the creation of models including expressive parameters beside pitch and
rhythm, and the interactive control of the generated output.
In this paper we describe and motivate the strategies we implemented for
the analysis and representation of the data, and the encoding techniques
we resorted to in order to facilitate the detection of low-level relationships
whilst saving computational resources. We also describe a representation
of pitch and time domains suitable for both the Markov chain and the
LSTM modules, and detail the tool’s architecture both from a functional
standpoint and from the perspective of the user. We conclude by present-
ing the testing results, by discussing the main limitations of the system
and how we intend to address them in future iterations.

Keywords: LSTM Neural Network · Markov Chain · MIDI Composer
· Max/MSP Neural Network

1 Introduction

The possible approaches to algorithmic composition by the means of computer-
based applications include knowledge-based systems, evolutionary algorithms,
Markov chains (MC) and Artificial Neural Networks (ANNs) [11]. The last two
methods, at the core of this work, tend to optimally respond to different needs
and use cases [2].

The most common ANNs architectures for the generation of music are feed-
forward networks [8], autoencoders [20], Restricted Boltzmann Machines (RBM) [1]
and Recurrent Neural Networks (RNN) [2]. Among the latter category, Long
Short-Term Memory (LSTM) neural networks are a subgroup that solves the

4 https://www.dropbox.com/sh/v869gify6pm6ta7/AAAcEjlWj-
kIJ2VpyNfCWHN7a?dl=0

5 https://cycling74.com/products/max



2 Nicola Privato, Omar Rampado, and Alberto Novello

vanishing gradient problem that characterises Vanilla RNNs, and are thus capa-
ble of recognizing underlying relationships in long time series [7] [6] [9].

ANNs can be consistent in their predictions and perform well on generaliza-
tion tasks. On the other hand, the required computational effort and memory
usage are usually high [10]. Furthermore, systems based on ANNs require long
training time and large datasets.

On the contrary, thanks to their relative simplicity, MC can provide the
user with a greater degree of real-time control over the produced output [3].
This advantage comes with some limitations, most notably an inherent inability
to generalize and the risk of plagiarism as the order of the pitch-transitions
is raised [15]. Furthermore, by incorporating multiple musical dimensions (e.g.
pitch and velocity) inside a single chain, the number of states is increased and
the possible transitions are reduced.

In order to take advantage of the specificities offered by both systems we
combined one MC controlling pitch transitions with one LSTM for all other
musical variables. On playback, a single MC random walk’s step is forwarded to
the LSTM, which pairs it with the remaining data and triggers the output of the
next step. The parallel processing of the MIDI source by the two modules allows
to combine different input models, thus producing a wide variety of musical
outcomes. At the same time, the serial connection in the output stage grants the
musical coherence of the material (see 4).

We implemented this system with Scramble, a MIDI tool for the real-time
generation of polyphonic music that allows the user to access the capabilities of
machine learning without the requirement of coding skills. The implementation
of Scramble arises out of the need to explore the interaction between artists
and autonomous systems [16]. Our aim is to offer a flexible and easy-to-use
tool applicable to interactive performance, composition or autonomous music
generation. The output can be easily controlled by the user even in a performative
environment and includes, beside pitch and rhythm generation, often overlooked
elements such as BPM and dynamic variability. At its core, Scramble combines
one MC model for pitch state transitioning with a LSTM neural network for
time-related and dynamic variables. It also offers a simplified user interface for
the analysis of MIDI files, the generation of editable models, and for the real-time
playback and adjustment of the MIDI output.

We chose to develop Scramble in Max/MSP since it is a very diffused platform
among electroacoustic musicians, in order to explore how more evolved machine
learning techniques can be integrated into the already established artistic praxis.
Indeed, even though the Max/MSP offers a few basic machine learning libraries
([19], ml-lib6), the application of more complex algorithms such as LSTM neural
network remains for the most part unexplored.

6 https://github.com/irllabs/ml-lib



LSTM and Markov Chains in Max/MSP 3

Scramble is based on two external modules: an obsolete LSTM developed by
Wesley Jackson (2011)7 and a MC external from the ml.star8 library by Ben-
jamin Day Smith [19]. The LSTM module initially presented some major bugs
and design limitations that have been fixed or worked around during Scramble’s
development. Bug fixes are listed in the provided changelog file9 and include
compatibility with Max 8.0, import and export methods, separate threading
implementation, introduction of batch load for all training data.

2 Data Representation

2.1 Pitch

In the case of polyphonic music, pitch is often represented to the learning algo-
rithm in the form of a piano roll where each bit is the active or inactive state
of a note in a many-hot encoding vector [12]. In order to cover the whole range
of a piano, 88 inputs need to be allocated for pitch. This alone would have ex-
ceeded the capabilities of the LSTM module, which is limited by design to a
maximum of 70 input and output neurons. Furthermore, such representation is
very sparse and produces a class imbalance for most pitches [11]. We instead
opted for a multi-voice approach similar to Hadjeres [8]. We considered a maxi-
mum polyphony of ten voices, and allocated the notes from the first to the tenth
voice starting from the highest one. This approach greatly reduced the number
of necessary inputs for the LSTM module, and left enough room to precisely
encode the remaining variables.

2.2 Time

Briot et al. [2] distinguish the possible approaches to the temporal representation
for LSTM networks into three main categories:

– Global representation, usually based on feedforward or autoencoder archi-
tectures, where a fixed, pre-established length for the whole output is given
(Minibach [2], DeepHear [20]).

– Time-step, where the shortest time-step is chosen as the minimum fixed gran-
ularity of the temporal subdivision in any other step. This approach, whilst
allowing a straightforward sequencing of the temporal dimension, results in
the generation of a large amount of data [18].

– Note-step, where no fixed time-step is present and granularity adapts to the
length of each note [13]. This approach allows for a remarkable reduction in
the dataset size.

7 Starting from J. Franklin’s source code (2004), based on F. Gers, N. Schraudolph
and J. Schmidhuber pseudocode (2002)

8 https://www.benjamindaysmith.com/ml-machine-learning-toolkit-in-max/
9 https://www.dropbox.com/s/hy3lxel1awzb82f/CHANGELOG.txt?dl=0



4 Nicola Privato, Omar Rampado, and Alberto Novello

We adopted a note-step approach because global representation is usually
performed through feedforward networks instead of RNNs and because its fixed
length would have limited the possible uses of the tool. Furthermore, a small
number of data points reduces the average training time, which is critical for
a tool conceived as a hands-on instrument. Finally, in a time-step approach,
slicing any note or chord whose granularity is higher than the minimum fixed
would generate two identical states. This has to be avoided in order to preserve
the MC variability, since the probabilities of each state transitioning into itself
would grow exponentially.

A note-step approach has a major limitation when dealing with pure polyphony:
a single time-step value for all of the notes inside a temporal slice allows for a
correct time representation only as long as all the notes are equally long. We
therefore introduced a note-length value for each individual pitch inside the clus-
ter. Even though this increases the number of dimensions for the vector repre-
senting each state, it simplifies the time representation in-between the states by
implicitly incorporating ties and rests. For instance, a step of 1 beat at 60 BPM
might contain one pitch whose individual note-length is 500 ms, resulting in a
rest of a half beat. On the contrary, if one of the notes is 2000 ms long, it is
sustained for another 1000 ms even after the next state is triggered.

2.3 MIDI Analyzer

The module responsible for the aforementioned representation of pitch and time
domains is the MIDI Analyzer. It generates the MIDI pre-processed datasets
(MDS) by extracting information from the real-time MIDI playback instead of
directly analyzing the files. This approach, at the expense of analysis speed,
allows Scramble to potentially connect with live MIDI instruments (see 7).

The real-time stream from the incorporated player is split into indexed states
containing all the note-on events occurring inside a 2 to 10 milliseconds span10. In
parallel, a timer measures the milliseconds between note-on and note-off events.
Even if the note-off event happens in the following states, the value is assigned
to the state where the measurement started and paired with the pertaining pitch
and velocity.

A second timer is responsible for calculating the step-length, defined as the
time between any two subsequent clusters of note-on events. The BPM rate
at the beginning of the state is finally appended. By combining the BPM and
step-length, the relative rhythmic value of each state is calculated with (1).

Ri =
(ti+1 − ti)× bpmi

60000
(1)

Where i is the index of the state, ti is the time of the ith state.
The MDS, editable from the GUI, is used to generate the input data for the

MC and the LSTM modules and displays each state as Fig. 1.

10 The milliseconds span varies depending on the selected analysis speed.



LSTM and Markov Chains in Max/MSP 5

Fig. 1. State, Note_1, Velocity_1, Note_1 Length, Note_2, Velocity_2, Note_2
Length, R(s), BPM

3 LSTM Data Encoding

The combination of the 2011 LSTMmodule byWesley Jackson with the Max/MSP
environment does not offer high computational performances. We therefore chose
to adopt a series of deterministic encoding techniques instead of assigning to
the neural network the task of detecting all the low-level relationships in the
datasets. In contrast with recent solutions described in Kumar [11], Liang [12],
Sun [21], Colombo [4], Yang [23], we adapted to our needs some of the tech-
niques proposed by Mozer [13] and Franklin [5], based on Shepard’s [17] studies
on psychoacoustics.

3.1 Pitch

Notes are encoded by incorporating their spatial representation on the circle
of fifths (Fig. 2). Each note is paired with a combination of six binary units,
and one unit is flipped at every next position on the circle. The similarity of two
pitches is therefore exponentially related to their distance in the representational
space [14].

In order to represent octave heights, piano roll positions are simply normal-
ized from 0 to 1. We chose to implement octave representation through a single
real value because more precise information on pitch within the octaves is already
conveyed through the circle of fifths [13].

3.2 Rhythm

For the representation of rhythm, we used multiple binary units to encode the
rhythmic relationships between states, and single real values to represent less
critical information such as individual note lengths and BPM. We partially
adopted the approach implemented by Mozer for his CONCERT system, con-
sisting of a five-dimensional space divided into three components, that provides
a parallel of Shepard’s psychoacoustically-motivated approach to pitch encod-
ing [13][17].

The duration of each state is conveyed by a total of sixteen binary values,
divided into (A) one group of four, (B) one group of three and (C) one group
of nine. A and B combined identify the smallest subdivision of each state up
to 1

12 of a single beat. C provides the number of beats to be added. For in-
stance, a total duration of 18

12 is represented as 12
12 by C, and 6

12 by A and B
combined. C implements a one-hot nine-dimensional vector to encode up to a
maximum musical value of 8 beats. A 4 modulo operation (A) and a 3 modulo



6 Nicola Privato, Omar Rampado, and Alberto Novello

Fig. 2. Spatial representation of pitch encoding.



LSTM and Markov Chains in Max/MSP 7

operation (B) are applied to the numerator of any value less than or equal to 12.
The remainder identifies the value to flip on a one-hot four-dimensional vector
for A and a one-hot three-dimensional vector for B. The two vectors combined
unequivocally designate a rhythmical value. As Mozer notes [13], this provides
similar representations for related durations, since eight-notes (2 on A, 0 on B)
and quarter-notes (0 on A, 0 on B) share the same B remainder; eight-note
triplets (0 on A, 1 on B) and quarter-note triplets (0 on A, 2 on B) share the
same remainder on A; quarter-notes and half-notes share the same remainders
on both circles (0 on A, 0 on B) (Table 1).

Table 1. Rhythm encoding. A is modulo 4, B is modulo 3 of Numerator. Musical Value
is arbitrarily defined within the minimum available temporal scope.

Numerator A B Musical Value
0 0 0 quarter note
1 1 1 thirty-two note
2 2 2 sixteen note triplet
3 3 0 sixteen note
4 0 1 eight note triplet
5 1 2 sixteen note + sixteen note triplet
6 2 0 eight note
7 3 1 eight note + thirty-two note
8 0 2 eight note + sixteen note triplet or quarter-note triplet
9 1 0 eight note + sixteen note
10 2 1 eight note + eight note triplet
11 3 2 eight note + sixteen note + sixteen note triplet
12 0 0 quarter note

Since the aforementioned system establishes a detailed representation of the
rhythmic structure between states, the remaining two time-related dimensions
(BPM and individual note-lengths) can be encoded via single non-binary values
without compromising the rhythmic structure of the output. Also, since each
state contains only one step-length value but may contain up to ten pitches,
each one with a given duration, encoding each note-length with sixteen binary
values would cause the number of inputs to exceed the system capacity. The
MIDI velocities ranging from 0 to 127 (integers) are simply normalized from 0
to 1 (real).

3.3 Machine Learning Datasets

The MDS provided by the MIDI Analyzer is split into two different training
sets. The first one (Pitch Set) encodes the pitch values as a sequence of tuples
structured as described at (2).

i, [p(ni,1), o(ni,1)], [p(ni,j), o(ni,j)] . . . [p(ni,10), o(ni,10)] (2)



8 Nicola Privato, Omar Rampado, and Alberto Novello

Where i is the index of state, p is the pitch encoding function, ni,j is the jth
note in the ith state, o is the normalization function of the pitch octave.

The second set (TD Set) encodes all time and dynamics related data as a
sequence of tuples structured as described at (3).

i, [v(ni,1), l(ni,1)], [v(ni,j), l(ni,j)] . . . [v(ni,10), l(ni,10)], Ri, bpmi (3)

Where i is the index of state, v is the velocity normalization function, ni,j is the
jth note in the ith state, l is the note length normalization function, Ri is the
relative rhythmic value of ith state (1), bpmi is the beat per minute in the ith
state.

4 Scramble

Scramble is structured into two main functional parts: a Training Module (Fig. 3)
and a Processing Module (Fig. 4). The former deals with the analysis of MIDI
files and the generation of MDSs for the training of the MC and LSTM module,
the latter deals with the interaction between the two and with the real-time
generation and manual adjustment of the MIDI output.

The MIDI pre-processed dataset generated by the analyzer can be edited,
stored and listened to through a secondary player (MDS Check), and is used to
build the Markov chain and LSTM datasets. The two sets respectively generate
or extend pre-existing Markov pitch transitions, and train the LSTM neural
network.

Since our aim with Scramble is to provide musicians with a creative tool that
allows a high degree of experimentation and because no correspondence to an
expected result is sought, we decided to suggest a timer in order to pause the
LSTM training beforehand. The user may then check the outcome and if neces-
sary resume training with the same dataset or with a new one. Alternatively, the
user can wait until the desired mean square error is reached (see 5). The model
can then be stored and recalled, and may be used as the basis for subsequent
training with new datasets.

The Processing Module is where the MC and the LSTM interact. Once ac-
tivated, the MC routes a single random state of up to ten pitches to the LSTM
module, which outputs velocities, note-lengths, step-length and tempo. All the
data relative to individual pitches is decoded and forwarded to the MIDI device
selected by the user. Step-length and tempo are instead used to determine the
time before the next MC output is triggered.

The user can influence the LSTM output by changing the MC pitch state
transitions in real time through the MC module. For instance, by using a MC set
in a particular musical range it is possible to recall a specific LSTM behavior.
We chose pitch as the main control element because it is more straightforward
for the user to enter a precise pitch value than velocity or time-related ones.



LSTM and Markov Chains in Max/MSP 9

Fig. 3. Scramble Training Module block diagram.



10 Nicola Privato, Omar Rampado, and Alberto Novello

Fig. 4. Scramble Processing Module block diagram.



LSTM and Markov Chains in Max/MSP 11

5 User Interface

Scramble user interface consists of three horizontal sections from top to bottom.
The topmost section (Fig. 5) is dedicated to the analysis of MIDI files. From the
central panel, it also provides feedback and instructions on the use of Scramble:
by approaching the cursor over the question mark on each sub-menu, a short
explanation of the function is visualized on the screen. The user may open any
MIDI file and start the analysis at a desired speed. If the original file does not
contain BPM information, a default value is automatically assigned to each state
of the generated dataset. The value can be manually changed from the Manual
BPM box. Once the input file is analyzed, the MDS is built in memory. It can be
visualized as text, saved, edited, and aurally checked starting from any selected
state number.

The central section (Fig. 6) comprises two menus: one for interacting with
the MC and dedicated to the generation of pitch transitions, the other for the
LSTM model training selection. From the Markov-Pitch tab the user may build,
edit or save a set, or open an existing one. By pressing the Build button, a new
pitch-transition table is generated, and by pressing Grow any number of MIDI
files can be stacked in order to generate complex chains. From the Order box,
the user may select the number of steps to consider for pitch transitions. All
operations on this box can be executed in real time with no interruptions while
the system is performing. The LSTM menu allows the generation and editing
of the training sets (Pitch and TD set) out of the MDS. A timer controls the
length of the training, which can be suspended and stored, opened and resumed
at will, even with different datasets.

The last section (Fig. 7) is dedicated to the real-time control of the perfor-
mance and to the user’s customization of the LSTM network. At the centre, the
Player sub-menu allows to select the MIDI device the data will be routed to,
and to activate the system. The Offsets tab offers the possibility to customize
the output by manually entering BPM, Velocity and Note Lengths. All the off-
sets can be dynamically applied during the performance. The Settings menu is
dedicated to the customization of the LSTM architecture. The user may exper-
iment with up to 70 blocks and 70 neurons per block. From this menu, it is also
possible to change the stop error value. Alpha boxes allow the tweaking of the
learning rate parameters in input, hidden and output layers. Finally, the Max
Step Length box restricts the maximum number of beats per each state before
the network training section.

6 Experimental Results

The focus of the architecture is to generate creative outcomes including recog-
nizable melodic, rhythmic and expressive patterns learnt from one or more MIDI
files. For this reason the overall results cannot be estimated with a statistical
approach based exclusively on the correspondence of the generated data with a
defined expectation. To evaluate the overall quality we engaged 6 professional



12 Nicola Privato, Omar Rampado, and Alberto Novello

Fig. 5. Scramble User Interface, topmost section.

Fig. 6. Scramble User Interface, central section.

Fig. 7. Scramble User Interface, bottom section.



LSTM and Markov Chains in Max/MSP 13

musicians and submitted them a form to fill after using the tool. We informed
the participants on how to use the software and asked them to connect the tool’s
output to a polyphonic MIDI instrument. We provided them with a link11 to
the software (both Windows OS and Mac OS), an introductory video, a short
help file and a manual. We also provided 3 pre-built MC sets (Arnold Schönberg,
Drei Klavierstücke; Vincent Youmans, Tea For Two theme with piano accom-
paniment; Keith Jarrett, Köln Concert part 1) and 3 LSTM models pre-trained
on individual songs (Modest Mussorgsky, Pictures at an Exhibition; Claude De-
bussy, Clair de Lune; Charlie Parker, Anthropology theme and solo). We chose
not to adhere to a specific music style in order to increase the output variability,
and to anonymize and unmatch the files in order to avoid expectation biases.
The users were free to interact in real time with playback and MC parameters.

We provided three scenarios:

1. Accompanied interaction: given three predefined combinations of MC sets
and LSTM models among the nine available, the user may freely tweak the
parameters.

2. Unaccompanied interaction: the user is free to experiment with any combi-
nation of the provided sets and models.

3. Free use (Optional): the user is free to train the system with any MIDI file
that includes velocity and tempo variations.

The same questions were asked for each scenario. “How coherent is the gener-
ated music (phrasing)? ”, “How coherent is the generated music (form)? ”, “How
interesting is the generated music? ”, “How expressive is the generated music
(dynamics)? ”, “How varied is the generated music (rhythm)? ”, “How easy is
Scramble to use? ”, “How much could you customize the musical output? ”. All
the answers are in a five-point Likert scale (1 is low and 5 is high).

One additional question was asked to the subjects: “In which context would
you imagine using Scramble? ”. The possible answers were “Artistic Installation”,
“Live Performance”, “Assisted Composition”. Only one answer accepted.

The results of both the accompanied and unaccompanied surveys displayed
in Fig. 8 suggest the overall efficacy of the system in generating coherent and
interesting results. Expressivity and rhythm are acceptable but may be improved
with a new, less limited LSTM module. The user interface is perceived as easy
to use, but the experience may be enhanced by improving feedback and adding
graphic details.

The results of the survey on the applicative context of the tool are equally
distributed (33.3% each).

Since the optional scenario (free use) is more demanding in terms of time
and hardware usage, only three of the subjects replied. The results are: phrasing
4.3, form 3.3, interesting 4.3, dynamics 3.0, rhythm 4.6, easy 3.6, customizable
4.6. The number of responses is low but coherent with those of the mandatory
tests.
11 https://www.dropbox.com/sh/v869gify6pm6ta7/AAAcEjlWj-

kIJ2VpyNfCWHN7a?dl=0



14 Nicola Privato, Omar Rampado, and Alberto Novello

Fig. 8. Distribution of answers for mandatory scenarios. The middle bars indicate the
mean values.

7 Conclusions and Future Work

We described Scramble, a generative MIDI composer that combines the advan-
tages offered by Markov chains in terms of live control of the generated output
with the ability to generalize offered by LSTM neural networks. Its graphic user
interface can be easily and intuitively operated by the musician, allowing for
flexibility and dynamic musical experimentation. Scramble combines the pitch
transitions generated by a Markov Chain with the velocity, rhythm and BPM
information provided by an LSTM neural network trained on the desired musical
style or author. We also described the structure of the system and the encoding
techniques applied to the input and output data.

As suggested by the survey’s results, the tool may prove useful in scenarios
such as live audio installations, performance or composition. On the other hand,
each specific task may require a more dedicated version. We therefore foresee
the development of the present Scramble’s iteration in two different directions:
one optimized for the interaction required by live performance, one dedicated to
autonomous music generation. Scramble’s live version is currently under devel-
opment, it will adapt the MIDI Analyzer input to live polyphonic MIDI sources,
and offer the possibility to temporarily store the pitch data into five different
buffers optionally controlled by footswitches. The user will therefore be capable
of dynamically changing and combining selected transition tables in real time.
If on the one hand the present architecture offers the possibility to actively con-
trol the MIDI output by changing the transition models, on the other hand the
performances offered by the MC on the macro-formal level are quite limited.
Scramble’s autonomous version will therefore substitute the Markov chain with
a second LSTM dedicated to pitch generation [5]. It will also offer a faster MIDI
Analyzer extracting MDSs directly from file. In order to allow for some degree
of control by the user, options such as plans [22] and reinforcement learning will
be also explored [11].



LSTM and Markov Chains in Max/MSP 15

The MC module by Benjamin Day Smith offers a limited number of controls
over the pitch state transitions, namely order selection and stacking of multi-
ple chains. In order to improve the overall performances whilst maintaining the
real-time control features that characterize this iteration of Scramble, we fore-
see the development of a new MC external allowing to incorporate the basic
compositional techniques of selectable music styles.

The LSTM module as designed by Wesley Jackson presents some design
limitations that could not be fixed: it is constrained to a single instantiation, with
fixed size limits on input and output and a limited number of layers and neurons
per layer. It also provides poor error evaluation and the lack of performance
optimization options results in a lengthened training time. We are therefore
currently working on the development of a new LSTM external for Max/MSP,
that would solve the design limitations we experienced with the present version,
offer more input and output capabilities and overall higher performances. The
new LSTM external will substitute the current one in all of Scramble’s iterations,
and become the core of a future Max/MSP RNN package.

References

1. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation
and transcription. Proceedings of the 29th International Conference on Machine
Learning (ICML-12) (2012)

2. Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep learning techniques for music gener-
ation, vol. 1. Springer (2020)

3. Cleeremans, A., Servan-Schreiber, D., McClelland, J.L.: Finite State Automata
and Simple Recurrent Networks. Neural Computation 1(3), 372–381 (09 1989).
https://doi.org/10.1162/neco.1989.1.3.372

4. Colombo, F., Muscinelli, S.P., Seeholzer, A., Brea, J., Gerstner, W.: Algorithmic
composition of melodies with deep recurrent neural networks (2016)

5. Franklin, J.A.: Jazz melody generation from recurrent network learning of several
human melodies. In: FLAIRS Conference. pp. 57–62 (2005)

6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with lstm. Neural computation 12(10), 2451–2471 (2000)

7. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems
28(10), 2222–2232 (2016)

8. Hadjeres, G., Pachet, F., Nielsen, F.: Deepbach: a steerable model for bach chorales
generation. In: International Conference on Machine Learning. pp. 1362–1371.
PMLR (2017)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

10. Justus, D., Brennan, J., Bonner, S., McGough, A.S.: Predicting the computational
cost of deep learning models. In: 2018 IEEE international conference on big data
(Big Data). pp. 3873–3882. IEEE (2018)

11. Kumar, H., Ravindran, B.: Polyphonic music composition with lstm neural net-
works and reinforcement learning. arXiv preprint arXiv:1902.01973 (2019)



16 Nicola Privato, Omar Rampado, and Alberto Novello

12. Liang, F.: Bachbot: Automatic composition in the style of bach chorales. University
of Cambridge 8, 19–48 (2016)

13. Mozer, M.C.: Neural network music composition by prediction: Exploring the ben-
efits of psychoacoustic constraints and multi-scale processing. Connection Science
6(2-3), 247–280 (1994)

14. Mozer, M.C., Soukup, T.: Connectionist music composition based on melodic and
stylistic constraints. In: Advances in Neural Information Processing Systems. pp.
789–796. Citeseer (1991)

15. Papadopoulos, A., Roy, P., Pachet, F.: Avoiding plagiarism in markov sequence gen-
eration. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 28
(2014)

16. Privato, N., Novello, A.: Generative scores and data mining: W.e.i.r.d. enters the
stage. In: Carvalhais, M., Verdicchio, M., Ribas, L., Rangel, A. (eds.) Proceedings
of the 9th Conference on Computation, Communication, Aesthetics X. pp. 126–139.
i2ADS (2021), https://2021.xcoax.org/xCoAx2021.pdf

17. Shepard, R.N.: Geometrical approximations to the structure of musical pitch. Psy-
chological review 89(4), 305 (1982)

18. Simon, I., Roberts, A., Raffel, C., Engel, J., Hawthorne, C., Eck, D.: Learning a
latent space of multitrack measures. arXiv preprint arXiv:1806.00195v1 (2018)

19. Smith, B.D., Garnett, G.E.: Unsupervised play: Machine learning toolkit for max.
In: NIME (2012)

20. Sun, F.: Deephear - composing and harmonizing music with neural networks (Sep
2015), https://fephsun.github.io/2015/09/01/neural-music.html, accessed: 2021-
03-01

21. Sun, Z., Liu, J., Zhang, Z., Chen, J., Huo, Z., Lee, C.H., Zhang, X.: Composing
music with grammar argumented neural networks and note-level encoding. In: 2018
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC). pp. 1864–1867. IEEE (2018)

22. Todd, P.M.: A connectionist approach to algorithmic composition. Computer Music
Journal 13(4), 27–43 (1989)

23. Yang, L.C., Chou, S.Y., Yang, Y.H.: Midinet: A convolutional generative adver-
sarial network for symbolic-domain music generation. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference. pp. 324–331.
ISMIR (2017)


